<u>www.niccomp.com</u> | technical support: <u>tpmg@niccomp.com</u> ## MLCC - Ceramic Chip Capacitors / Failure Mode Study Potential Failure Causes, Accelerators, Behavior | Cause | Sources | Indications | Behavior | Remedy | |--|--|---|---|--| | Electrical Overstress;
AC current
or Pulse current | Poor design choice or inappropriate component selection | Self heating (I²ESR), Increased leakage current Discoloration over time In severe cases melting of solder alloy and component displacement, | Decreased IR (increased LC)
typically leading to short or open
condition | Alternate lower loss dielectric
MLCC or film capacitor | | Electrical Overstress;
Voltage | Poor design choice or inappropriate component selection | Micro-cracking within ceramicDielectric punctureExternal flashover | Decreased IR (increased LC) typically leading to short or open condition | Higher voltage rated component or alternate capacitor type | | Mechanical Stress | Component test or tape operations Component placement Centering jaws Post reflow PCB Flexure or Shock PCB depanelization Impact damage to PCB | Damage to MLCC bodyCracking observed in ceramic | Immediate or latent IR failure;
increasing LC or erratic LC leading
to short | Machine set-up, maintenance
and operator training Placement pressure PCB Routing Flexible soft terminal MLCCs | | Thermal Stress | Hand Soldering PCB Rework Wave – flow soldering Forced cooling – quenching Subsequent PCB soldering processes | Cracking observed in ceramicLeaching of terminal metallization | Immediate or latent IR failure; increasing LC or erratic LC leading to short | Training and control Reduce heating – cooling rates | | Intrinsic Defect | Contamination in ceramicImproper pressing or sintering | High porosity or voids in ceramicKnit-line voiding or crackingFiring cracks | Immediate or latent LC;
increasing LC leading to short Early HALT test failure | Material control and clean room particle control Pressing and Sintering controls | | lonic
or metal conduction | PC residues, flux residues, water type, saponifier, assembly aids, sealers or coatings & external sources | Electrochemical migration (dendrite growth) or corrosion | Decreased IR (increased LC) over time and operating temp & RH | IQC, alternate materials, cleaning upgrade and alternate sealers |