www.niccomp.com | technical support: tpmg@niccomp.com ## Thick & Thin Film Resistors / Failure Mode Study | Cause | Sources | Indications | Behavior | Remedy | |--|--|--|---|--| | Electrical Overstress,
AC current
or Pulse current | Poor design choice or inappropriate component selection | Self heating (I²Rs) Discoloration over time In severe cases melting of solder alloy and component displacement | Increased resistance value or open condition | Alternate higher power rated component or revise circuit design | | EDS | Pick & placement, secondary (reverse side) processing, ICT, PCB handling or labeling. | No external visual signs | Initially decreased resistance value,
repeated application leads to
increased resistance or open
condition | EDS controls | | Mechanical Stress | Component test or taping Component placement Centering jaws Post reflow PCB shock Impact damage to PCB | Damage to component body Opening of terminals or conductors | Immediate or latent failure;
increasing resistance value ICT failures | Machine set-up, maintenance
and operator training Placement pressure | | Thermal Stress | Hand SolderingPCB ReworkForced cooling – quenching | Damage to component bodyOpening of terminals or conductors | Immediate resistance value shiftICT failures | Training and controlReduce heating – cooling rates | | Operating Environment | High humidityHigh temperature | Reduction of resistive element metallization as moisture penetrates into energized components | Increased resistance value or
open condition | Upgrade to higher moisture
resistant series (auto grade) PCB coatings or sealants | | Intrinsic Defect | Improper resistive element printing | No external visual signs | Immediate resistance value shift
upon exposure to soldering heat ICT failures | Printing controls for alignment, upgrade IPQC | | lonic
or metal conduction | PC residues, flux residues, water type, saponifier, assembly aids, sealers or coatings & external sources | Electrochemical migration (dendrite growth) or corrosion | Decreased resistance over time, temperature and RH | IQC, alternate materials, cleaning upgrade and alternate sealers | | Corrosion | Sulfur corrosion of silver (Ag) conductors when used in sulfurous environments | No external visual signs | Increased resistance value over time in field | Use sulfur resistant version
components (NRC-S series)PCB coatings or sealants | [→] Review your circuit requirements with NIC TPMG department/ tpmg@nicccomp.com